Jump to content
 

Arduino Applications and Programs


Simond
 Share

Recommended Posts

  • RMweb Premium

Fabrice,

Thank you for sharing your Diagram and Matrix.

 

I follow the Interlocking Matrix, I have difficulty in getting my head around how the Arduino Interlocking Works using Boolean. I would like to see a complete and working "Sketch" for a simple Interlock.

Edited by Pannier Tank
Link to post
Share on other sites

David,

 

Arduino program algorithm :

 

Begin

 

Do you move a lever ?

-> No, I do nothing. Go to begin

->Yes, I do.

 

Can I move this lever ? Is it lock (lever_table_lock) ?

-> Yes, it is. That's wrong. the default led switchs on. You can do nothing while you move again this lever. The default led switchs off. Go to the begin

-> No, it isn't.

 

Apply the interlocking matrix (table_interlocking)

Play the sound of the lever

Send a loconet message

Go to the begin

 

To be continued...

 

Fabrice

Edited by ffayolle
Link to post
Share on other sites

David,

 

I've added some messages for Arduino Serial Monitor to see what's happen.

// SignalBox
// Signal box with "Nb_lever" levers with interlocking system

//Fabrice Fayolle, April 2016
//Beta Version for Arduino Uno

//Signal box with "NB_lever"
const int Nb_lever = 7;

// Arduino Uno
// Pin        -> Use for                    -> Connect to
// 0
// 1
// 2
// 3
// 4          -> Default                    -> Red LED (with a 220 ohms resistor)
// 5
// 6          -> LocoNet Transmit pin       -> Locoshield PCB Tx pin
// 7
// 8          -> LocoNet Receive pin        -> Locoshield PCB Rx pin
// 9 to 15    -> Lever Input                -> SPDT ON-ON
// 16 to 19   -> Wtv020                     -> Wtv020 PCB

// INPUT
// Lever : SPDT ON-ON
// 1 -> 5V -> Normal position
// Common point -> Lever Input
// 2 -> GND -> Reverse position
// OUTPUT
// Digitrax LocoNet message

// Type lever table
// 0 -> Not use
// 1 -> Point
// 2 -> FPL
// 3 -> Signal
const int Table_lever_type[Nb_lever] = {3, 3, 1, 2, 1, 3, 0};

// Locking lever table to initialize each lock lever
// 0 -> No lock
// 1 -> 1 lock
// x -> x lock
const int Table_lever_lock[Nb_lever] = {1, 1, 0, 0, 0, 1, 1};

// Interlocking system table (locking rules)
// 0 -> Nothing
// 1 -> Lock
// -1 -> Release
// 1xx -> LW (Lock When Normal)
// -1xx -> RW (Release When Normal)
// 2xx -> LW (Lock When Reverse)
// -2xx -> RW (Release When Reverse)
const int Table_interlocking[Nb_lever * Nb_lever] = {
  // Lever 1 (signal)
  // 1 locks 2, 4 and 5
  0, 1, 0, 1, 1, 0, 0,
  // Lever 2 (signal)
  // 2 locks 1, 4 and 5
  1, 0, 0, 1, 1, 0, 0,
  // Lever 3 (point)
  // 3 locks 4
  0, 0, 0, 1, 0, 0, 0,
  // Lever 4 (FPL)
  // 4 releases 1 and 2. 4 locks 3
  -1, -1, 1, 0, 0, 0, 0,
  // Lever 5 (point)
  // 5 locks 1 and 2. 5 releases 6
  1, 1, 0, 0, 0, -1, 0,
  // Lever 6 (signal)
  // 6 locks 3 and 5
  0, 0, 1, 0, 1, 0, 0,
  // Lever 7 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0,
};

// Visual management for interlocking system
// Default lever position
const int DefaultPin = 4;

//LocoNet
#include <LocoNet.h>
// LocoNet Transmit pin
#define LNtxPin 6
// pointer to a received LocoNet packet
lnMsg  *LnPacket;
//DDC Address of stationary decoder
const int Table_lever_dcc[Nb_lever] = {1, 2, 3, 4, 5, 6, 7};
void sendOPC_SW_REQ(int SLever_dcc, boolean SLever_state, boolean On)
{
  lnMsg SendPacket ;
  int sw2 = 0x00;
  if (SLever_state)
  {
    sw2 |= B00100000;
  }
  if (On)
  {
    sw2 |= B00010000;
  }
  sw2 |= (SLever_dcc >> 7) & 0x0F;
  SendPacket.data[ 0 ] = OPC_SW_REQ ;
  SendPacket.data[ 1 ] = SLever_dcc & 0x7F ;
  SendPacket.data[ 2 ] = sw2 ;
  LocoNet.send( &SendPacket );
  //Serial.println("OPC_SW_REQ LocoNet message sent");
}
void LocoNet_Message(int SLever_dcc, int SLever_type, boolean SLever_state)
{
  switch (SLever_type)
  {
    case 0 :
      // 0 -> Not use
      break;
    case 1 :
      // 1 -> Point
      sendOPC_SW_REQ(SLever_dcc, SLever_state, true);
      sendOPC_SW_REQ(SLever_dcc, SLever_state, false);
      break;
    case 2:
      // 2 -> FPL
      break;
    case 3:
      // 3 -> Signal
      break;
    default:
      break;
  }
}

//Wtv020
#include <Wtv020sd16p.h>
const int clockPin = 16;  // CLOCK   7
const int resetPin = 17;  // RESET   1
const int diPin = 18;     // DATAIN  10
const int busyPin = 19;   // BUSY    15
Wtv020sd16p wtv020sd16p(resetPin, clockPin, diPin, busyPin);
// 0000.AD4 -> 0 -> Lever change
// 0001.AD4 -> 1 -> Signal box is ready to use
//Wait the end of the sound before to do
void Wtv020_wait()
{
  delay(250);
  while (digitalRead(busyPin) == HIGH)
  {
  }
}

//Object "Lever"
class Lever
{
  private:
    int Lever_input;
    int Lever_type;
    int Lever_state;
    int Lever_lock;
    int Lever_dcc;
  public:
    void Setup(int SLever_input);
    boolean State_of_lever();
    boolean Change_asking();
    boolean Change_is_possible();
    void Change();
    void Change_lever_lock(int SChange);
}
;

void Lever::Setup(int SLever_input)
{
  // Input : from pin 9 to pin 15
  Lever_input = SLever_input + 9;
  pinMode (Lever_input, INPUT);
  digitalWrite(Lever_input, HIGH);
  boolean Normal = true;
  boolean Reverse = false;
  if (digitalRead(Lever_input) == Reverse)
  {
    delay(100);
    if (digitalRead(Lever_input) == Reverse)
    {
      digitalWrite(DefaultPin, HIGH);
      while (digitalRead(Lever_input) == Reverse)
      {
      }
      digitalWrite(DefaultPin, LOW);
    }
  }
  Lever_type = Table_lever_type[SLever_input];
  // State of the lever
  // true -> Normal(by default)
  // false -> Reverse
  Lever_state = true;
  Lever_lock = Table_lever_lock[SLever_input];
  Lever_dcc = Table_lever_dcc[SLever_input];
  LocoNet_Message(Lever_dcc, Lever_type, true);
}

boolean Lever::Change_asking()
{
  boolean result = false;
  if (digitalRead(Lever_input) != Lever_state)
  {
    delay(100);
    if (digitalRead(Lever_input) != Lever_state)
    {
      result = true;
    }
  }
  return result;
}

boolean Lever::Change_is_possible()
{
  boolean result = false;
  result = (Lever_lock == 0);
  if (result == false)
  {
    while (digitalRead(Lever_input) != Lever_state)
    {
      digitalWrite(DefaultPin, HIGH);
    }
    digitalWrite(DefaultPin, LOW);
  }
  return result;
}

void Lever::Change()
{
  Lever_state = !Lever_state;
  // Wtv020
  wtv020sd16p.asyncPlayVoice(0);
  //DCC
  LocoNet_Message(Lever_dcc, Lever_type, Lever_state);
  //Wtv020
  Wtv020_wait();
}

boolean Lever::State_of_lever()
{
  boolean result = true;
  result = Lever_state;
  return result;
}

void Lever::Change_lever_lock(int SChange)
{
  Lever_lock += SChange;
}

Lever L[Nb_lever];

void setup()
{
  // Initialize Serial Port USB at 57600 baud
  Serial.begin(57600);
  Serial.println("Monitor");
  // Wtv020
  wtv020sd16p.reset();
  delay(250);
  // Visual management
  pinMode(DefaultPin, OUTPUT);
  digitalWrite(DefaultPin, LOW);
  // Levers setup
  for (int i = 0; i < Nb_lever; i++)
  {
    L[i].Setup(i);
  }
  // Wtv020
  wtv020sd16p.asyncPlayVoice(1);
  //Wtv020_wait();
  Serial.println("Ready to use");
}

void loop()
{
  for (int i = 0; i < Nb_lever; i++)
  {
    if (L[i].Change_asking())
    {
      if (L[i].Change_is_possible())
      {
        // Interlocking rules
        Locking_rules(i);
        // Change the state of the lever
        L[i].Change();
        Serial.print("Lever ");
        Serial.print(i + 1);
        Serial.print(" changed to ");
        if (L[i].State_of_lever())
        {
          Serial.print("Normal");
        }
        else
        {
          Serial.print("Reverse");
        }
        Serial.println();
      }
    }
  }
}

void Locking_rules(int Slever)
{
  int Shift = Slever * Nb_lever;
  if (L[Slever].State_of_lever())
    // Lever on "Normal" position
  {
    for (int i = 0; i < Nb_lever; i++)
    {
      switch (Table_interlocking[Shift + i])
      {
        case 0 :
          break;
        case -1 :
          L[i].Change_lever_lock(Table_interlocking[Shift + i]);
          Serial.print(Slever+1);
          Serial.print(" releases ");
          Serial.println(i+1);      
          break;
        case 1 :
          L[i].Change_lever_lock(Table_interlocking[Shift + i]);
          Serial.print(Slever+1);
          Serial.print(" locks ");
          Serial.println(i+1);      
          break;
        default :
          L[i].Change_lever_lock(Conditionnal_locking(Table_interlocking[Shift + i]));
          ;
      }
    }
  }
  else
    // Lever on "Reverse" position
  {
    for (int i = 0; i < Nb_lever; i++)
    {
      switch (Table_interlocking[Shift + i])
      {
        case 0 :
          break;
        case -1 :
          L[i].Change_lever_lock(-Table_interlocking[Shift + i]);
          Serial.print(Slever+1);
          Serial.print(" locks ");
          Serial.println(i+1);      
          break;
        case 1 :
          L[i].Change_lever_lock(-Table_interlocking[Shift + i]);
          Serial.print(Slever+1);
          Serial.print(" releases ");
          Serial.println(i+1);      
          break;
        default :
          L[i].Change_lever_lock(-Conditionnal_locking(Table_interlocking[Shift + i]));
          ;
      }
    }
  }
}

int Conditionnal_locking (int Locking)
{
  int Hundred = Locking / 100;
  int result = 0;
  switch (Hundred)
  {
    case 1 :
      if (L[Locking - 101].State_of_lever())
      {
        result = 1;
      }
      break;
    case -1 :
      if (L[-Locking - 101].State_of_lever())
      {
        result = -1;
      }
      break;
    case 2 :
      if (!L[Locking - 201].State_of_lever())
      {
        result = 1;
      }
      break;
    case -2 :
      if (!L[-Locking - 201].State_of_lever())
      {
        result = -1;
      }
      break;
  }
  return result;
}

Just copy the code and enjoy!!!

 

Fabrice

Link to post
Share on other sites

Hi all of you,

I've received my locoshield PCB (LocoNet Interface for Arduino).

I've tested my Arduino Program. And it is APPROVEDDDDDDDDDDDDDDDD

 

I can control now directly turnouts by my interface.

 

The program code is :

[code]
// SignalBox
// Signal box (terminus station with single track) with "Nb_lever" levers
// Signal box integrated interlocking system and tokenless block system (single track / terminus station)
// Sound system -> Wtv020
// Digitrax LocoNet -> LocoNet
// Tokenless Block System -> Tokenless

// Fabrice Fayolle, May 2016
// Version 1.0 for Arduino Uno

// Signal box with "NB_lever"
const int Nb_lever = 7;

// Arduino Uno
// Pin        -> Use for                      -> Connect to
// 0
// 1
// 2          -> Tokenless Up (IN)            -> Tokenless PCB
// 3          -> Tokenless Signal Up (OUT)    -> Tokenless PCB
// 4         
// 5          -> Tokenless Signal Down (OUT)  -> Tokenless PCB
// 6          -> Default                      -> Red LED (with a 220 ohms resistor)
// 7          -> LocoNet Transmit pin         -> Locoshield PCB Tx pin
// 8          -> LocoNet Receive pin          -> Locoshield PCB Rx pin
// 9 to 15    -> Lever Input                  -> SPDT ON-ON
// 16 to 19   -> Wtv020                       -> Wtv020 PCB

// INPUT
// Lever : SPDT ON-ON
// 1 -> 5V -> Normal position
// Common point -> Lever Input
// 2 -> GND -> Reverse position
// OUTPUT
// Digitrax LocoNet message

// Type lever table
// 0 -> Not use
// 1 -> Point
// 2 -> FPL
// 3 -> Signal
// 4 -> Block signal
const int Table_lever_type[Nb_lever] = {4, 4, 1, 2, 1, 3, 0};

// Locking lever table to initialize each lock lever
// 0 -> No lock
// 1 -> 1 lock
// x -> x lock
const int Table_lever_lock[Nb_lever] = {1, 2, 0, 0, 0, 1, 1};

// Interlocking system table (locking rules)
// It's not necessary to simplify locking rules like with mechanical locking bars
// 0 -> Nothing
// 1 -> Lock
// -1 -> Release
// 1xx -> LWxxN (Lock When xx Normal)
// -1xx -> RWxxN (Release When xx Normal)
// 2xx -> LWxxR (Lock When xx Reverse)
// -2xx -> RWxxR (Release When xx Reverse)
const int Table_interlocking[Nb_lever * Nb_lever] = {
  // Lever 1 (signal)
  // 1 locks 2, 3, 4, 5 and 6
  0, 1, 1, 1, 1, 1, 0,
  // Lever 2 (signal)
  // 2 locks 1, 3, 4, 5 and 6
  1, 0, 1, 1, 1, 1, 0,
  // Lever 3 (point)
  // 3 locks 1,2 and 4
  1, 1, 0, 1, 0, 0, 0,
  // Lever 4 (FPL)
  // 4 releases 1 and 2. 4 locks 3
  -1, -1, 1, 0, 0, 0, 0,
  // Lever 5 (point)
  // 5 locks 1 and 2. 5 releases 6
  1, 1, 0, 0, 0, -1, 0,
  // Lever 6 (signal)
  // 6 locks 1, 2, 3(BW) and 5
  1, 1, 1, 0, 1, 0, 0,
  // Lever 7 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0
};

// Visual management for interlocking system
// Default lever position
const int DefaultPin = 6;

// Tokenless block system
// Rail directions : Up Line -> To London / Down Line -> To the station
boolean Block_ON = false;
// Define which Arduino UNO Pin you use for communicate with the Tokenless PCB
const int upBlock_request_PIN = 2;
const int upBlock_signalopen_PIN = 3;
const int downBlock_signalopen_PIN = 5;
// Define which lever type you use for Block signal
const int Block_signal = 4;
// Define which lever you use to control signal
const int upSignal_lever = 1;
const int downSignal_lever = 0;
boolean upBlock_request = false;
boolean upBlock_blocked = false;

// LocoNet
#include <LocoNet.h>
// LocoNet Transmit pin
#define LN_TX_PIN     7
// Pointer to a received LocoNet packet
lnMsg  *LnPacket;
// DDC Address of stationary decoder
const int Table_lever_dcc[Nb_lever] = {1, 2, 3, 4, 11, 6, 7};
void sendOPC_SW_REQ(int SLever_dcc, boolean SLever_state, boolean On)
{
  lnMsg SendPacket ;
  int sw2 = 0x00;
  if (SLever_state)
  {
    sw2 |= B00100000;
  }
  if (On)
  {
    sw2 |= B00010000;
  }
  sw2 |= (SLever_dcc >> 7) & 0x0F;
  SendPacket.data[ 0 ] = OPC_SW_REQ ;
  SendPacket.data[ 1 ] = SLever_dcc & 0x7F ;
  SendPacket.data[ 2 ] = sw2 ;
  LocoNet.send( &SendPacket );
  Serial.print ("DCC address ");
  Serial.print(SLever_dcc+1);
  Serial.println(" : OPC_SW_REQ LocoNet message sent");
}
void LocoNet_Message(int SLever_dcc, int SLever_type, boolean SLever_state)
{
  switch (SLever_type)
  {
    case 0 :
      // 0 -> Not use
      break;
    case 1 :
      // 1 -> Point
      sendOPC_SW_REQ(SLever_dcc - 1, SLever_state, true);
      sendOPC_SW_REQ(SLever_dcc - 1, SLever_state, false);
      break;
    case 2:
      // 2 -> FPL
      break;
    case 3:
      // 3 -> Signal
      break;
    case 4:
      // 4 -> Block signal
      break;
    default:
      break;
  }
}

// Wtv020
#include <Wtv020sd16p.h>
const int clockPin = 16;  // CLOCK   7
const int resetPin = 17;  // RESET   1
const int diPin = 18;     // DATAIN  10
const int busyPin = 19;   // BUSY    15
Wtv020sd16p wtv020sd16p(resetPin, clockPin, diPin, busyPin);
// 0000.AD4 -> 0 -> Lever change
// 0001.AD4 -> 1 -> Block system code bell
// 0002.AD4 -> 2 -> People talking
// 0003.AD4 -> 3 -> Steam engine
// 0004.AD4 -> 4 -> People talking (2)
// Wait the end of the sound before to do something else
void Wtv020_wait()
{
  delay(250);
  while (digitalRead(busyPin) == HIGH)
  {
  }
}
void Play_random_sound()
{
  unsigned long time = millis();
  if (time % random(1, 1000) == random(0, 10))
  {
    Serial.println("Sound system");
    wtv020sd16p.asyncPlayVoice(random(2, 5));
    Wtv020_wait();
  }
}

// Object "Lever"
class Lever
{
  private:
    int Lever_input;
    int Lever_type;
    int Lever_state;
    int Lever_lock;
    int Lever_dcc;
  public:
    void Setup(int SLever_input);
    boolean State_of_lever();
    int Type_of_lever();
    boolean Change_asking();
    boolean Change_is_possible();
    void Change();
    void Change_lever_lock(int SChange);
}
;

void Lever::Setup(int SLever_input)
{
  // Input : from pin 9 to pin 15
  Lever_input = SLever_input + 9;
  pinMode (Lever_input, INPUT);
  digitalWrite(Lever_input, HIGH);
  boolean Normal = true;
  boolean Reverse = false;
  if (digitalRead(Lever_input) == Reverse)
  {
    delay(100);
    if (digitalRead(Lever_input) == Reverse)
    {
      digitalWrite(DefaultPin, HIGH);
      while (digitalRead(Lever_input) == Reverse)
      {
      }
      digitalWrite(DefaultPin, LOW);
    }
  }
  Lever_type = Table_lever_type[SLever_input];
  // State of the lever
  // true -> Normal(by default)
  // false -> Reverse
  Lever_state = true;
  Lever_lock = Table_lever_lock[SLever_input];
  Lever_dcc = Table_lever_dcc[SLever_input];
  LocoNet_Message(Lever_dcc, Lever_type, true);
}

boolean Lever::Change_asking()
{
  boolean result = false;
  if (digitalRead(Lever_input) != Lever_state)
  {
    delay(100);
    if (digitalRead(Lever_input) != Lever_state)
    {
      result = true;
    }
  }
  return result;
}

boolean Lever::Change_is_possible()
{
  boolean result = false;
  result = (Lever_lock == 0);
  if (result == false)
  {
    while (digitalRead(Lever_input) != Lever_state)
    {
      digitalWrite(DefaultPin, HIGH);
    }
    digitalWrite(DefaultPin, LOW);
  }
  return result;
}

void Lever::Change()
{
  Lever_state = !Lever_state;
  // Wtv020
  wtv020sd16p.asyncPlayVoice(0);
  // LocoNet
  LocoNet_Message(Lever_dcc, Lever_type, Lever_state);
  // Wtv020
  Wtv020_wait();
}

boolean Lever::State_of_lever()
{
  boolean result = true;
  result = Lever_state;
  return result;
}

int Lever::Type_of_lever()
{
  int result = 0;
  result = Lever_type;
  return result;
}

void Lever::Change_lever_lock(int SChange)
{
  Lever_lock += SChange;
}

Lever L[Nb_lever];

void setup()
{
  // Initialize Serial Port USB at 57600 baud
  Serial.begin(57600);
  Serial.println("Monitor");
  // LocoNet
  LocoNet.init(LN_TX_PIN);
  // Wtv020
  wtv020sd16p.reset();
  delay(500);
  // If you want to adjust the speaker volume, modify on Wtv020sd16p library (Wtv020sd16p.cpp)
  // this constant VOLUME_MAX = 0xFFF7 (from 0xFFF0 to 0xFFF7)  and use the unmute() function
  wtv020sd16p.unmute();
  delay(500);
  // Visual management
  pinMode(DefaultPin, OUTPUT);
  digitalWrite(DefaultPin, LOW);
  // Levers setup
  for (int i = 0; i < Nb_lever; i++)
  {
    L[i].Setup(i);
  }
  Serial.println("Ready to use");
  // Tokenless
  pinMode(upBlock_request_PIN, INPUT);
  pinMode(upBlock_signalopen_PIN, OUTPUT);
  digitalWrite(upBlock_request_PIN, HIGH);
  digitalWrite(upBlock_signalopen_PIN, HIGH);
  pinMode(downBlock_signalopen_PIN, OUTPUT);
  digitalWrite(downBlock_signalopen_PIN, HIGH);
  Serial.println("Tokenless Block System : Normal");
}

void loop()
{
  for (int i = 0; i < Nb_lever; i++)
  {
    if (L[i].Change_asking())
    {
      if (L[i].Change_is_possible())
      {
        // Interlocking rules
        Locking_rules(i);
        // Change the state of the lever
        L[i].Change();
        Serial.print("Lever ");
        Serial.print(i + 1);
        Serial.print(" changed to ");
        if (L[i].State_of_lever())
        {
          Serial.print("Normal");
        }
        else
        {
          Serial.print("Reverse");
        }
        Serial.println();
        // Tokenless
        if ( i == upSignal_lever)
        {
          if (L[i].State_of_lever())
          {
            if (Block_ON)
            {
              L[i].Change_lever_lock(1);
              Serial.print("Block System locks ");
              Serial.println(i + 1);
              upBlock_blocked = true;
              digitalWrite(upBlock_signalopen_PIN, HIGH);
            }
          }
          else
          {
            if (Block_ON)
            {
              digitalWrite(upBlock_signalopen_PIN, LOW);
              Serial.println("Tokenless Block System : UP -> Blocked");
            }
          }
        }
        if ( i == downSignal_lever)
        {
          if (L[i].State_of_lever())
          {
            digitalWrite(downBlock_signalopen_PIN, HIGH);
            Serial.println("Signal DOWN Line -> Closed");
          }
          else
          {
            digitalWrite(downBlock_signalopen_PIN, LOW);
            Serial.println("Signal DOWN Line -> Open");
          }
        }
      }
    }
  }
  // Tokenless
  upBlock_accept();
  upBlock_normal();
  // Wtv020
  Play_random_sound();
}

void Locking_rules(int Slever)
// Apply interlocking system rules when you move a lever
{
  int Shift = Slever * Nb_lever;
  if (L[Slever].State_of_lever())
    // Lever on "Normal" position
  {
    for (int i = 0; i < Nb_lever; i++)
    {
      switch (Table_interlocking[Shift + i])
      {
        case 0 :
          break;
        case -1 :
          // Releases
          L[i].Change_lever_lock(Table_interlocking[Shift + i]);
          Serial.print(Slever + 1);
          Serial.print(" releases ");
          Serial.println(i + 1);
          break;
        case 1 :
          // Locks
          L[i].Change_lever_lock(Table_interlocking[Shift + i]);
          Serial.print(Slever + 1);
          Serial.print(" locks ");
          Serial.println(i + 1);
          break;
        default :
          // Locks/Releases when xx Normal/Reverse
          L[i].Change_lever_lock(Conditionnal_locking(Table_interlocking[Shift + i]));
          ;
      }
    }
  }
  else
    // Lever on "Reverse" position
  {
    for (int i = 0; i < Nb_lever; i++)
    {
      switch (Table_interlocking[Shift + i])
      {
        case 0 :
          break;
        case -1 :
          // Locks
          L[i].Change_lever_lock(-Table_interlocking[Shift + i]);
          Serial.print(Slever + 1);
          Serial.print(" locks ");
          Serial.println(i + 1);
          break;
        case 1 :
          // Releases
          L[i].Change_lever_lock(-Table_interlocking[Shift + i]);
          Serial.print(Slever + 1);
          Serial.print(" releases ");
          Serial.println(i + 1);
          break;
        default :
          // Releases/Locks when xx Normal/Reverse
          L[i].Change_lever_lock(-Conditionnal_locking(Table_interlocking[Shift + i]));
          ;
      }
    }
  }
}

int Conditionnal_locking (int Locking)
// Verify lever position if interlocking system rule is Locks/Releases When Lever xx is Normal/Reverse
{
  int Hundred = Locking / 100;
  int result = 0;
  switch (Hundred)
  {
    case 1 :
      // Locks when Lever (Locking-(HundredX100)) is Normal
      if (L[Locking - 101].State_of_lever())
      {
        result = 1;
      }
      break;
    case -1 :
      // Releases when Lever (Locking-(HundredX100)) is Normal
      if (L[-Locking - 101].State_of_lever())
      {
        result = -1;
      }
      break;
    case 2 :
      // Locks when Lever (Locking-(HundredX100)) is Reverse
      if (!L[Locking - 201].State_of_lever())
      {
        result = 1;
      }
      break;
    case -2 :
      // Releases when Lever (Locking-(HundredX100)) is Reverse
      if (!L[-Locking - 201].State_of_lever())
      {
        result = -1;
      }
      break;
  }
  return result;
}

void upBlock_accept()
// Tokenless Block System on "Accepted" for Up Line
{
  upBlock_request = digitalRead(upBlock_request_PIN);
  delay(100);
  if ( !upBlock_request && (!Block_ON && L[downSignal_lever].State_of_lever()))
  {
    // Wtv020
    wtv020sd16p.asyncPlayVoice(1);
    Wtv020_wait();
    Serial.println("Tokenless Block System : UP Line -> Accepted");
    L[upSignal_lever].Change_lever_lock(-1);
    Serial.print("Block System releases ");
    Serial.println(upSignal_lever + 1);
    L[downSignal_lever].Change_lever_lock(1);
    Serial.print("Block System locks ");
    Serial.println(downSignal_lever + 1);
    Block_ON = true;
  }
}

void upBlock_normal()
// Tokenless Block System on "Normal"
{
  upBlock_request = digitalRead(upBlock_request_PIN);
  delay(100);
  if (L[upSignal_lever].State_of_lever())
  {
    if ( upBlock_request && Block_ON )
    {
      if (!upBlock_blocked)
      {
        L[upSignal_lever].Change_lever_lock(1);
        Serial.print("Block System locks ");
        Serial.println(upSignal_lever + 1);
      }
      upBlock_blocked = false;
      Block_ON = false;
      L[downSignal_lever].Change_lever_lock(-1);
      Serial.print("Block System releases ");
      Serial.println(downSignal_lever + 1);
      Serial.println("Tokenless Block System : Normal");
    }
  }
}
[/code]

If you are interesting by my Locoshield PCB, don't hesitate to contact me.

 

Comments welcome!!!

 

Keep in touch, Fabrice

  • Like 1
Link to post
Share on other sites

Hi all of you,

I tested my Tokenless Block System Arduino Program with the other program.

I use another Arduino Uno.

The code is :

// Tokenless
//Tokenless block system for single track
// A -> B : Down Line
// B -> A : Up Line
// Rail directions : Up Line -> To London / Down Line -> To the station

// Fabrice Fayolle, May 2016
// Version 1.0 for Arduino Uno

// Arduino Uno
// Pin      -> Use for                      -> Connect to
// 0
// 1
// 2        -> A:Normal                     -> Orange LED (with a 470 ohms resistor)
// 3        -> A:Blocked                    -> Red LED
// 4        -> A:Accepted                   -> Green LED
// 5        -> B:Normal                     -> Orange LED (with a 470 ohms resistor)
// 6        -> B:Blocked                    -> Red LED
// 7        -> B:Accepted                   -> Green LED
// 8
// 9
// 10       -> Up (OUT)                     -> Locoshield PCB
// 11       -> Signal Up (IN)               -> Locoshield PCB
// 12       -> Down (OUT)                   -> Locoshield PCB (Uno -> Pin 2 / Mega -> Pin x)
// 13       -> Signal Down (IN)             -> Locoshield PCB (Uno -> Pin 3 / Mega -> Pin x)
// 14       -> Lever input (B:Arrived)      -> SPDT ON-(ON)
// 15       -> Lever input (B:Offer)        -> SPDT ON-(ON)
// 16       -> Lever input (B:Normal/Accept)-> SPDT ON-ON
// 17       -> Lever input (A:Arrived)      -> SPDT ON-(ON)
// 18       -> Lever input (A:Offer)        -> SPDT ON-(ON)
// 19       -> Lever input (A:Normal/Accept)-> SPDT ON-ON

// INPUT
// SPDT ON-ON
// 1 -> 5V -> Normal
// Common point
// 2 -> GND -> Accept
int A_Normal_Accept = 19;
// SPDT ON-MON
// 1 -> 5V
// Common point
// 2 -> GND -> Offer
int A_Offer = 18;
// SPDT ON-MON
// 1 -> 5V
// Common point
// 2 -> GND -> Offer
int A_Arrived = 17;
//
int B_Normal_Accept = 16;
int B_Offer = 15;
int B_Arrived = 14;
//
int A_Block_OK = 10;
int A_Signal_Open = 11;
int B_Block_OK = 12;
int B_Signal_Open = 13;
// Orange LED
int A_Normal = 2;
// Red LED
int A_Blocked = 3;
// Green LED
int A_Accepted = 4;
//
int B_Normal = 5;
int B_Blocked = 6;
int B_Accepted = 7;

void setup()
{
  pinMode(A_Normal, OUTPUT);
  digitalWrite(A_Normal, HIGH);
  pinMode(B_Normal, OUTPUT);
  digitalWrite(B_Normal, HIGH);
  pinMode(A_Blocked, OUTPUT);
  digitalWrite(A_Blocked, HIGH);
  pinMode(B_Blocked, OUTPUT);
  digitalWrite(B_Blocked, HIGH);
  pinMode(A_Accepted, OUTPUT);
  digitalWrite(A_Accepted, HIGH);
  pinMode(B_Accepted, OUTPUT);
  digitalWrite(B_Accepted, HIGH);
  pinMode(A_Normal_Accept, INPUT);
  digitalWrite(A_Normal_Accept, HIGH);
  pinMode(B_Normal_Accept, INPUT);
  digitalWrite(B_Normal_Accept, HIGH);
  pinMode(A_Offer, INPUT);
  digitalWrite(A_Offer, HIGH);
  pinMode(B_Offer, INPUT);
  digitalWrite(B_Offer, HIGH);
  pinMode(A_Arrived, INPUT);
  digitalWrite(A_Arrived, HIGH);
  pinMode(B_Arrived, INPUT);
  digitalWrite(B_Arrived, HIGH);
  pinMode(A_Signal_Open, INPUT);
  digitalWrite(A_Signal_Open, HIGH);
  pinMode(A_Block_OK, OUTPUT);
  digitalWrite(A_Block_OK, HIGH);
  pinMode(B_Signal_Open, INPUT);
  digitalWrite(B_Signal_Open, HIGH);
  pinMode(B_Block_OK, OUTPUT);
  digitalWrite(B_Block_OK, HIGH);
  // Normalisation of the block
  // Each signalman sets his block instrument to “Accept” (A_Normal_Accept and B_Normal_Accept to HIGH), provided no shunting is taking place into the block section.
  // The block status is indicated to both signalmen as “Normal” (A_Normal and B_Normal to LOW)
  while (digitalRead(A_Normal_Accept) == LOW || digitalRead(B_Normal_Accept) == LOW)
  {
    digitalWrite(A_Blocked, LOW);
    digitalWrite(B_Blocked, LOW);
    delay(250);
    digitalWrite(A_Blocked, HIGH);
    digitalWrite(B_Blocked, HIGH);
    delay(250);
  }
  digitalWrite(A_Normal, LOW);
  digitalWrite(B_Normal, LOW);
}

void loop()
{
  while (digitalRead(A_Normal_Accept) == LOW && digitalRead(B_Normal_Accept) == LOW)
  {
    if ((digitalRead(A_Offer) == LOW) || (digitalRead(B_Offer) == LOW))
    {
      for (int i = 0; i < 4; i++)
      {
        digitalWrite(A_Normal, HIGH);
        digitalWrite(B_Normal, HIGH);
        delay(250);
        digitalWrite(A_Normal, LOW);
        digitalWrite(B_Normal, LOW);
        delay(250);
      }
    }
  }
  // When the next train arrives at A, the A signalman sets his block instrument to “Normal” (A_Normal_Accept to LOW).
  // He then presses “Offer” (A_Offer to LOW).
  // At B, automatic acceptance of the train occurs, and the block status is indicated as “Blocked” (B_Blocked to LOW).
  // If the B instrument were not set to “Accept” (B_Normal_Accept at HIGH), this would not occur, and an blinking warning would be given
  // When acceptance has occurred, the block status at A is indicated as “Accepted” (A_Accepted to LOW).
  if ((digitalRead(A_Normal_Accept) == LOW) && (digitalRead(B_Normal_Accept) == HIGH) && (digitalRead(A_Offer) == LOW))
  {
    digitalWrite(A_Normal, HIGH);
    digitalWrite(A_Accepted, LOW);
    digitalWrite(B_Normal, HIGH);
    digitalWrite(B_Blocked, LOW);
    digitalWrite(A_Block_OK, LOW);
    delay(250);
    // The A signalman may now, at any time, release his starting signal towards B.
    // As the signal clears (A_Signal_Open at LOW), the block status changes to “Blocked” (A_Blocked to LOW).
    while (digitalRead(A_Signal_Open) != LOW)
    {
    }
    digitalWrite(A_Accepted, HIGH);
    digitalWrite(A_Blocked, LOW);
    delay(250);
    // The A signalman replaces his starting signal to danger once the train has departed from A (A_Signal_Open at HIGH).
    while (digitalRead(A_Signal_Open) == LOW)
    {
    }
    delay(250);
    // The B signalman checks that the train has arrived complete at B (tail lamp) and then sets his block instrument to “Normal” (B_Normal to LOW).
    // He presses “Train Arrived” (B_Arrived to LOW).
    // The block section status is then restored to “Normal” (A_Normal and B_Normal at LOW) and indicated to both signalmen by “Normal” indications (A_Normal and B_Normal to LOW).
    while ((digitalRead(B_Arrived) != LOW) || (digitalRead(B_Normal_Accept) != LOW))
    {
    }
    digitalWrite(A_Blocked, HIGH);
    digitalWrite(B_Blocked, HIGH);
    digitalWrite(A_Normal, LOW);
    digitalWrite(B_Normal, LOW);
    digitalWrite(A_Block_OK, HIGH);
  }
  // When the next train arrives at B, the B signalman sets his block instrument to “Normal” (B_Normal_Accept to LOW).
  // He then presses “Offer” (B_Offer to LOW).
  // ...
  if ((digitalRead(B_Normal_Accept) == LOW) && (digitalRead(A_Normal_Accept) == HIGH) && (digitalRead(B_Offer) == LOW))
  {
    digitalWrite(B_Normal, HIGH);
    digitalWrite(B_Accepted, LOW);
    digitalWrite(A_Normal, HIGH);
    digitalWrite(A_Blocked, LOW);
    digitalWrite(B_Block_OK, LOW);
    delay(250);
    while (digitalRead(B_Signal_Open) != LOW)
    {
    }
    digitalWrite(B_Accepted, HIGH);
    digitalWrite(B_Blocked, LOW);
    delay(250);
    while (digitalRead(B_Signal_Open) == LOW)
    {
    }
    delay(250);
    while ((digitalRead(A_Arrived) != LOW) || (digitalRead(A_Normal_Accept) != LOW))
    {
    }
    digitalWrite(B_Blocked, HIGH);
    digitalWrite(A_Blocked, HIGH);
    digitalWrite(B_Normal, LOW);
    digitalWrite(A_Normal, LOW);
    digitalWrite(B_Block_OK, HIGH);
  }
}

To be continued...

 

Fabrice

 

Link to post
Share on other sites

  • 2 weeks later...

Hi all of you,

I 've designed a Locoshield version for Arduino Mega.

 

post-3358-0-33218100-1463578861_thumb.jpg

 

I've more possibilities with the Arduino Mega.

 

I've added on my program Loconet Throttle management. I can now command my turntable by my Arduino program.

// SignalBox-Mega
// Signal box (terminus station with single track) with "Nb_lever" levers
// Signal box integrated interlocking system and tokenless block system (single track / terminus station)
// Sound system -> Wtv020
// Digitrax LocoNet -> LocoNet
// Tokenless Block System -> Tokenless
// DCC Throttle -> Throttle

// Fabrice Fayolle, May 2016
// Version 2.0 for Arduino Mega

// Signal box with "NB_lever"
const int Nb_lever = 20;

// Arduino Mega
// Pin                  -> Use for                      -> Connect to
// 0
// 1
// 2                    -> Tokenless Up (IN)            -> Tokenless PCB (Pin 12)
// 3                    -> Tokenless Signal Up (OUT)    -> Tokenless PCB (Pin 13)
// 4
// 5                    -> Tokenless Signal Down (OUT)  -> Tokenless PCB
// 6                    -> Default                      -> Red LED (with a 220 ohms resistor)
// 9                    -> Emergency Stop               -> Push button
// 10                   -> Turntable direction          -> SPDT ON-ON
// 11                   -> Turntable stop               -> Push button
// 12                   -> Turntable low speed          -> Push button
// 13                   -> Turntable mid speed          -> Push button
// 14                   -> Loco start/stop              -> Push button
// 15                   -> Loco whistle                 -> Push button
// 22 to 45             -> Lever Input                  -> SPDT ON-ON
// 46                   -> LocoNet Transmit pin         -> Locoshield PCB Tx pin
// 48                   -> LocoNet Receive pin          -> Locoshield PCB Rx pin
// 47, 49, 51 and 53    -> Wtv020                       -> Wtv020 PCB

// INPUT
// Emergency Stop : Push button
// 1 -> Emergency Stop Pin
// 2 -> GND
// Lever : SPDT ON-ON
// 1 -> 5V -> Normal position
// Common point -> Lever Input Pin
// 2 -> GND -> Reverse position
// OUTPUT
// Digitrax LocoNet message

// Global constants and variables
const boolean Activated = LOW;

// Type lever table
// 0 -> Not use
// 1 -> Point
// 2 -> FPL
// 3 -> Signal
// 4 -> Block signal
const int Table_lever_type[Nb_lever] = {4, 4, 1, 2, 1, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

// Locking lever table to initialize each lock lever
// 0 -> No lock
// 1 -> 1 lock
// x -> x lock
const int Table_lever_lock[Nb_lever] = {1, 2, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};

// Interlocking system table (locking rules)
// It's not necessary to simplify locking rules like with mechanical locking bars
// 0 -> Nothing
// 1 -> Lock
// -1 -> Release
// 1xx -> LWxxN (Lock When xx Normal)
// -1xx -> RWxxN (Release When xx Normal)
// 2xx -> LWxxR (Lock When xx Reverse)
// -2xx -> RWxxR (Release When xx Reverse)
const int Table_interlocking[Nb_lever * Nb_lever] = {
  // Lever 1 (signal)
  // 1 locks 2, 3, 4, 5 and 6
  0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 2 (signal)
  // 2 locks 1, 3, 4, 5 and 6
  1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 3 (point)
  // 3 locks 1,2 and 4
  1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 4 (FPL)
  // 4 releases 1 and 2. 4 locks 3
  -1, -1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 5 (point)
  // 5 locks 1 and 2. 5 releases 6
  1, 1, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 6 (signal)
  // 6 locks 1, 2, 3(BW) and 5
  1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 7 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 8 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 9 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 10 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 11 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 12 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 13 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 14 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 15 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 16 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 17 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 18 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 19 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
  // Lever 20 (-)
  // not used
  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
};

// Visual management for interlocking system
// Default lever position
const int DefaultPin = 6;

// Tokenless block system
// Rail directions : Up Line -> To London / Down Line -> To the station
boolean Block_ON = false;
// Define which Arduino UNO Pin you use for communicate with the Tokenless PCB
const int upBlock_request_PIN = 2;
const int upBlock_signalopen_PIN = 3;
const int downBlock_signalopen_PIN = 5;
// Define which lever type you use for Block signal
const int Block_signal = 4;
// Define which lever you use to control signal
const int upSignal_lever = 1;
const int downSignal_lever = 0;
boolean upBlock_request = false;
boolean upBlock_blocked = false;

// Throttle
// Define the address of the turntable DCC decoder
const int ADR_Turntable = 101;
// Define constants and variables for the turntable
boolean TT_dir = false;
const int TT_dir_PIN = 10;
const int TT_stop_PIN = 11;
const int TT_lowspeed_PIN = 12;
const int TT_midspeed_PIN = 13;
// Define the address of the loco DCC decoder
const int ADR_Loco = 22;
// Define constants and variables for the loco
boolean Loco_On = false;
const int Loco_start_stop_PIN = 14;
const int Loco_whistle_PIN = 15;

// LocoNet
#include <LocoNet.h>
// Define LocoNet Transmit Pin
#define LN_TX_PIN     46
// Emergency Stop
const int Emergency_PIN = 9;
// Pointer to a received LocoNet packet
lnMsg  *LnPacket;
// DDC Address of stationary decoder
const int Table_lever_dcc[Nb_lever] = {1, 2, 3, 4, 11, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20};
void slot_Init()
// Initiliaze all slots
{
  for (int slot = 0; slot < 120; slot++)
  {
    sendOPC_xxx(OPC_RQ_SL_DATA, slot, 0);
  }
}
void sendOPC_x(int OPC_Type)
// OPC_GPOFF - OPC_GPON - OPC_IDLE LocoNet Message
{
  lnMsg SendPacket;
  SendPacket.data[0] = OPC_Type;
  LocoNet.send( &SendPacket );
  switch (OPC_Type)
  {
    case OPC_GPOFF:
      // OPC_GPOFF -> Power OFF
      Serial.print("OPC_GPOFF");
      break;
    case OPC_GPON:
      // OPC_GPON -> Power ON
      Serial.print("OPC_GPON");
      break;
    case OPC_IDLE:
      // OPC_IDLE -> Emergency Stop
      Serial.print("OPC_IDLE");
      break;
  }
  Serial.println(" LocoNet message sent");
  delay(250);
  return;
}
void sendOPC_xxx(int OPC_Type, int Arg1, int Arg2)
// OPC_LOCO_SPD - OPC_LOCO_DIRF - OPC_LOCO_SND - OPC_SW_REQ - OPC_MOVE_SLOTS - OPC_RQ_SL_DATA - OPC_LOCO_ADR LocoNet Message
{
  lnMsg SendPacket;
  SendPacket.data[0] = OPC_Type;
  SendPacket.data[1] = Arg1;
  SendPacket.data[2] = Arg2;
  LocoNet.send( &SendPacket );
  switch (OPC_Type)
  {
    case OPC_LOCO_SPD:
      // OPC_LOCO_SPD
      Serial.print ("SLOT ");
      Serial.print(Arg1);
      Serial.print(" : OPC_LOCO_SPD");
      break;
    case OPC_LOCO_DIRF:
      // OPC_LOCO_DIRF
      Serial.print ("SLOT ");
      Serial.print(Arg1);
      Serial.print(" : OPC_LOCO_DIRF");
      break;
    case OPC_LOCO_SND:
      // OPC_LOCO_SND
      Serial.print ("SLOT ");
      Serial.print(Arg1);
      Serial.print(" : OPC_LOCO_SND");
      break;
    case OPC_SW_REQ:
      // OPC_SW_REQ
      Serial.print ("Turnout Adr ");
      Serial.print(Arg1 + 1);
      Serial.print(" : OPC_SW_REQ");
      break;
    case OPC_MOVE_SLOTS:
      // OPC_MOVE_SLOTS
      Serial.print ("SLOT ");
      Serial.print(Arg1);
      Serial.print(" : OPC_MOVE_SLOTS");
      break;
    case OPC_RQ_SL_DATA:
      // OPC_RQ_SL_DATA
      Serial.print ("SLOT ");
      Serial.print(Arg1);
      Serial.print(" : OPC_RQ_SL_DATA");
      break;
    case OPC_LOCO_ADR:
      // OPC_LOCO_ADR
      Serial.print ("DCC Adr ");
      Serial.print(Arg2);
      Serial.print(" : OPC_LOCO_ADR");
      break;
  }
  Serial.println(" LocoNet message sent");
  delay(250);
  return;
}
void LocoNet_Message_For_Lever(int SLever_dcc, int SLever_type, boolean SLever_state)
{
  int sw1 = 0x00;
  int sw2 = 0x00;
  switch (SLever_type)
  {
    case 0 :
      // 0 -> Not use
      break;
    case 1 :
      // 1 -> Point
      SLever_dcc = SLever_dcc - 1;
      if (SLever_state)
      {
        sw1 |= B00100000;
        sw2 |= B00100000;
      }
      sw1 |= B00010000;
      sw1 |= (SLever_dcc >> 7) & 0x0F;
      sw2 |= (SLever_dcc >> 7) & 0x0F;
      sendOPC_xxx(OPC_SW_REQ, SLever_dcc & 0x7F, sw1);
      sendOPC_xxx(OPC_SW_REQ, SLever_dcc & 0x7F, sw2);
      break;
    case 2:
      // 2 -> FPL
      break;
    case 3:
      // 3 -> Signal
      break;
    case 4:
      // 4 -> Block signal
      break;
  }
  return;
}

// Wtv020
#include <Wtv020sd16p.h>
const int clockPin = 47;  // CLOCK   7
const int resetPin = 49;  // RESET   1
const int diPin = 51;     // DATAIN  10
const int busyPin = 53;   // BUSY    15
Wtv020sd16p wtv020sd16p(resetPin, clockPin, diPin, busyPin);
// 0000.AD4 -> 0 -> Lever change
// 0001.AD4 -> 1 -> Block system code bell
// 0002.AD4 -> 2 -> People talking
// 0003.AD4 -> 3 -> Steam engine
// 0004.AD4 -> 4 -> People talking (2)
// Wait the end of the sound before to do something else
void Wtv020_wait()
{
  delay(250);
  while (digitalRead(busyPin) == HIGH)
  {
  }
  return;
}
void Play_random_sound()
{
  unsigned long time = millis();
  if (time % random(1, 1000) == random(0, 10))
  {
    Serial.println("Sound system");
    wtv020sd16p.asyncPlayVoice(random(2, 5));
    Wtv020_wait();
  }
  return;
}

// Object "Throttle"
class Throttle
{
  private:
    int SLOT;
    int ADR;
    int SPD;
    int DIRF;
    int SND;
  public:
    void Setup(int SADR);
    void Change_SPD(int SSPD);
    void Change_DIRF(int SDIRF);
    void Change_SND(int SSND);
}
;
void Throttle::Setup(int SADR)
{
  sendOPC_xxx(OPC_LOCO_ADR, 0, SADR);
  delay(250);
  LnPacket = LocoNet.receive() ;
  while ((LnPacket->data[0] != 0xE7) | (LnPacket->data[4] != SADR))
  {
    sendOPC_xxx(OPC_LOCO_ADR, 0, SADR);
    delay(250);
    LnPacket = LocoNet.receive();
  }
  Serial.print(LnPacket->data[0], HEX);
  Serial.print(" LocoNet Message Received -> DCC Adr ");
  Serial.print(LnPacket->data[4]);
  Serial.print(" was found in SLOT ");
  Serial.println(LnPacket->data[2]);
  SLOT = LnPacket->data[2];
  ADR = LnPacket->data[4];
  SPD = 0x00;
  DIRF = 0x00;
  SND = 0x00;
  sendOPC_xxx(OPC_MOVE_SLOTS, SLOT, SLOT);
  sendOPC_xxx(OPC_LOCO_DIRF, SLOT, DIRF);
  sendOPC_xxx(OPC_LOCO_SPD, SLOT, SPD);
  sendOPC_xxx(OPC_LOCO_SND, SLOT, SND);
  Serial.println("Communication initialized");
  return;
}
void Throttle::Change_SPD(int SSPD)
{
  SPD = SSPD;
  Serial.print("SPD at ");
  Serial.print((SPD * 100) / 128);
  Serial.println("%");
  sendOPC_xxx(OPC_LOCO_SPD, SLOT, SPD);
}
void Throttle::Change_DIRF(int SDIRF)
{
  DIRF = DIRF + SDIRF;
  Serial.print("Direction:");
  if ((DIRF & 0x20) == 0)
    Serial.print(" <-");
  else
    Serial.print("->");
  Serial.print("/Lights:");
  if ((DIRF & 0x10) == 0)
    Serial.print("Off");
  else
    Serial.print("On");
  Serial.print("/F1:");
  if ((DIRF & 0x01) == 0)
    Serial.print("Off");
  else
    Serial.print("On");
  Serial.print("/F2:");
  if ((DIRF & 0x02) == 0)
    Serial.print("Off");
  else
    Serial.print("On");
  Serial.print("/F3:");
  if ((DIRF & 0x04) == 0)
    Serial.println("Off");
  else
    Serial.println("On");
  Serial.print("DIRF: ");
  Serial.println(DIRF);
  sendOPC_xxx(OPC_LOCO_DIRF, SLOT, DIRF);
}
void Throttle::Change_SND(int SSND)
{
  SND = SND + SSND;
  Serial.print("SND: ");
  Serial.println(SND);
  sendOPC_xxx(OPC_LOCO_DIRF, SLOT, SND);
}
Throttle TT_Throttle, Loco_Throttle;

// Object "Lever"
class Lever
{
  private:
    int Lever_input;
    int Lever_type;
    int Lever_state;
    int Lever_lock;
    int Lever_dcc;
  public:
    void Setup(int SLever_input);
    boolean State_of_lever();
    int Type_of_lever();
    boolean Change_asking();
    boolean Change_is_possible();
    void Change();
    void Change_lever_lock(int SChange);
}
;
void Lever::Setup(int SLever_input)
{
  // Input : from pin 22 to pin 45
  Lever_input = SLever_input + 22;
  pinMode (Lever_input, INPUT);
  digitalWrite(Lever_input, HIGH);
  boolean Normal = true;
  boolean Reverse = false;
  if (digitalRead(Lever_input) == Reverse)
  {
    delay(100);
    if (digitalRead(Lever_input) == Reverse)
    {
      digitalWrite(DefaultPin, HIGH);
      while (digitalRead(Lever_input) == Reverse)
      {
      }
      digitalWrite(DefaultPin, LOW);
    }
  }
  Lever_type = Table_lever_type[SLever_input];
  // State of the lever
  // true -> Normal(by default)
  // false -> Reverse
  Lever_state = true;
  Lever_lock = Table_lever_lock[SLever_input];
  Lever_dcc = Table_lever_dcc[SLever_input];
  LocoNet_Message_For_Lever(Lever_dcc, Lever_type, true);
  return;
}
boolean Lever::Change_asking()
{
  boolean result = false;
  if (digitalRead(Lever_input) != Lever_state)
  {
    delay(100);
    if (digitalRead(Lever_input) != Lever_state)
    {
      result = true;
    }
  }
  return result;
}
boolean Lever::Change_is_possible()
{
  boolean result = false;
  result = (Lever_lock == 0);
  if (result == false)
  {
    while (digitalRead(Lever_input) != Lever_state)
    {
      digitalWrite(DefaultPin, HIGH);
    }
    digitalWrite(DefaultPin, LOW);
  }
  return result;
}
void Lever::Change()
{
  Lever_state = !Lever_state;
  // Wtv020
  wtv020sd16p.asyncPlayVoice(0);
  // LocoNet
  LocoNet_Message_For_Lever(Lever_dcc, Lever_type, Lever_state);
  // Wtv020
  // Wtv020_wait();
  return;
}
boolean Lever::State_of_lever()
{
  boolean result = true;
  result = Lever_state;
  return result;
}
int Lever::Type_of_lever()
{
  int result = 0;
  result = Lever_type;
  return result;
}
void Lever::Change_lever_lock(int SChange)
{
  Lever_lock += SChange;
  return;
}
Lever L[Nb_lever];

void setup()
{
  // Initialize Serial Port USB at 57600 baud
  Serial.begin(57600);
  Serial.println("Monitor");
  // LocoNet
  LocoNet.init(LN_TX_PIN);
  pinMode(Emergency_PIN, INPUT);
  digitalWrite(Emergency_PIN, HIGH);
  DCC_On();
  // Throttle
  // Initialize turntable INPUT
  pinMode(TT_dir_PIN, INPUT);
  digitalWrite(TT_dir_PIN, HIGH);
  pinMode(TT_stop_PIN, INPUT);
  digitalWrite(TT_stop_PIN, HIGH);
  pinMode(TT_lowspeed_PIN, INPUT);
  digitalWrite(TT_lowspeed_PIN, HIGH);
  pinMode(TT_midspeed_PIN, INPUT);
  digitalWrite(TT_midspeed_PIN, HIGH);
  // Initialize Turntable Throttle
  TT_Throttle.Setup(ADR_Turntable);
  // Initialize loco INPUT
  pinMode(Loco_start_stop_PIN, INPUT);
  digitalWrite(Loco_start_stop_PIN, HIGH);
  pinMode(Loco_whistle_PIN, INPUT);
  digitalWrite(Loco_whistle_PIN, HIGH);
  // Initialize Loco Throttle
  Loco_Throttle.Setup(ADR_Loco);
  // Wtv020
  wtv020sd16p.reset();
  delay(500);
  // If you want to adjust the speaker volume, modify on Wtv020sd16p library (Wtv020sd16p.cpp)
  // this constant VOLUME_MAX = 0xFFF7 (from 0xFFF0 to 0xFFF7)  and use the unmute() function
  wtv020sd16p.unmute();
  delay(500);
  // Visual management
  pinMode(DefaultPin, OUTPUT);
  digitalWrite(DefaultPin, LOW);
  // Levers setup
  for (int i = 0; i < Nb_lever; i++)
  {
    L[i].Setup(i);
  }
  Serial.println("Ready to use");
  // Tokenless
  pinMode(upBlock_request_PIN, INPUT);
  pinMode(upBlock_signalopen_PIN, OUTPUT);
  digitalWrite(upBlock_request_PIN, HIGH);
  digitalWrite(upBlock_signalopen_PIN, HIGH);
  pinMode(downBlock_signalopen_PIN, OUTPUT);
  digitalWrite(downBlock_signalopen_PIN, HIGH);
  Serial.println("Tokenless Block System : Normal");
}

void loop()
{
  for (int i = 0; i < Nb_lever; i++)
  {
    if (L[i].Change_asking())
    {
      if (L[i].Change_is_possible())
      {
        // Interlocking rules
        Locking_rules(i);
        // Change the state of the lever
        L[i].Change();
        Serial.print("Lever ");
        Serial.print(i + 1);
        Serial.print(" changed to ");
        if (L[i].State_of_lever())
        {
          Serial.print("Normal");
        }
        else
        {
          Serial.print("Reverse");
        }
        Serial.println();
        // Tokenless
        if ( i == upSignal_lever)
        {
          if (L[i].State_of_lever())
          {
            if (Block_ON)
            {
              L[i].Change_lever_lock(1);
              Serial.print("Block System locks ");
              Serial.println(i + 1);
              upBlock_blocked = true;
              digitalWrite(upBlock_signalopen_PIN, HIGH);
            }
          }
          else
          {
            if (Block_ON)
            {
              digitalWrite(upBlock_signalopen_PIN, LOW);
              Serial.println("Tokenless Block System : UP -> Blocked");
            }
          }
        }
        if ( i == downSignal_lever)
        {
          if (L[i].State_of_lever())
          {
            digitalWrite(downBlock_signalopen_PIN, HIGH);
            Serial.println("Signal DOWN Line -> Closed");
          }
          else
          {
            digitalWrite(downBlock_signalopen_PIN, LOW);
            Serial.println("Signal DOWN Line -> Open");
          }
        }
      }
    }
  }
  // Loconet
  Emergency();
  // Tokenless
  upBlock_accept();
  upBlock_normal();
  // Wtv020
  //Play_random_sound();
  // Throttle (turntable)
  Turntable_Order();
  // Throttle (loco)
  Loco_Order();
}

void Locking_rules(int Slever)
// Apply interlocking system rules when you move a lever
{
  int Shift = Slever * Nb_lever;
  if (L[Slever].State_of_lever())
    // Lever on "Normal" position
  {
    for (int i = 0; i < Nb_lever; i++)
    {
      switch (Table_interlocking[Shift + i])
      {
        case 0 :
          break;
        case -1 :
          // Releases
          L[i].Change_lever_lock(Table_interlocking[Shift + i]);
          Serial.print(Slever + 1);
          Serial.print(" releases ");
          Serial.println(i + 1);
          break;
        case 1 :
          // Locks
          L[i].Change_lever_lock(Table_interlocking[Shift + i]);
          Serial.print(Slever + 1);
          Serial.print(" locks ");
          Serial.println(i + 1);
          break;
        default :
          // Locks/Releases when xx Normal/Reverse
          L[i].Change_lever_lock(Conditionnal_locking(Table_interlocking[Shift + i]));
          ;
      }
    }
  }
  else
    // Lever on "Reverse" position
  {
    for (int i = 0; i < Nb_lever; i++)
    {
      switch (Table_interlocking[Shift + i])
      {
        case 0 :
          break;
        case -1 :
          // Locks
          L[i].Change_lever_lock(-Table_interlocking[Shift + i]);
          Serial.print(Slever + 1);
          Serial.print(" locks ");
          Serial.println(i + 1);
          break;
        case 1 :
          // Releases
          L[i].Change_lever_lock(-Table_interlocking[Shift + i]);
          Serial.print(Slever + 1);
          Serial.print(" releases ");
          Serial.println(i + 1);
          break;
        default :
          // Releases/Locks when xx Normal/Reverse
          L[i].Change_lever_lock(-Conditionnal_locking(Table_interlocking[Shift + i]));
          ;
      }
    }
  }
  return;
}

int Conditionnal_locking (int Locking)
// Verify lever position if interlocking system rule is Locks/Releases When Lever xx is Normal/Reverse
{
  int Hundred = Locking / 100;
  int result = 0;
  switch (Hundred)
  {
    case 1 :
      // Locks when Lever (Locking-(HundredX100)) is Normal
      if (L[Locking - 101].State_of_lever())
      {
        result = 1;
      }
      break;
    case -1 :
      // Releases when Lever (Locking-(HundredX100)) is Normal
      if (L[-Locking - 101].State_of_lever())
      {
        result = -1;
      }
      break;
    case 2 :
      // Locks when Lever (Locking-(HundredX100)) is Reverse
      if (!L[Locking - 201].State_of_lever())
      {
        result = 1;
      }
      break;
    case -2 :
      // Releases when Lever (Locking-(HundredX100)) is Reverse
      if (!L[-Locking - 201].State_of_lever())
      {
        result = -1;
      }
      break;
  }
  return result;
}

void upBlock_accept()
// Tokenless Block System on "Accepted" for Up Line
{
  upBlock_request = digitalRead(upBlock_request_PIN);
  delay(100);
  if ( !upBlock_request && (!Block_ON && L[downSignal_lever].State_of_lever()))
  {
    // Wtv020
    wtv020sd16p.asyncPlayVoice(1);
    Wtv020_wait();
    Serial.println("Tokenless Block System : UP Line -> Accepted");
    L[upSignal_lever].Change_lever_lock(-1);
    Serial.print("Block System releases ");
    Serial.println(upSignal_lever + 1);
    L[downSignal_lever].Change_lever_lock(1);
    Serial.print("Block System locks ");
    Serial.println(downSignal_lever + 1);
    Block_ON = true;
  }
  return;
}

void upBlock_normal()
// Tokenless Block System on "Normal"
{
  upBlock_request = digitalRead(upBlock_request_PIN);
  delay(100);
  if (L[upSignal_lever].State_of_lever())
  {
    if ( upBlock_request && Block_ON )
    {
      if (!upBlock_blocked)
      {
        L[upSignal_lever].Change_lever_lock(1);
        Serial.print("Block System locks ");
        Serial.println(upSignal_lever + 1);
      }
      upBlock_blocked = false;
      Block_ON = false;
      L[downSignal_lever].Change_lever_lock(-1);
      Serial.print("Block System releases ");
      Serial.println(downSignal_lever + 1);
      Serial.println("Tokenless Block System : Normal");
      //Wtv020
      wtv020sd16p.asyncPlayVoice(2);
      Wtv020_wait();
    }
  }
  return;
}

void DCC_On()
// DCC Power ON
{
  sendOPC_x(OPC_GPOFF);
  sendOPC_x(OPC_GPON);
  return;
}

void Emergency()
// Emergency Stop required
{
  if (digitalRead(Emergency_PIN) == Activated)
  {
    delay(100);
    if (digitalRead(Emergency_PIN) == Activated)
    {
      while (digitalRead(Emergency_PIN) == Activated)
      {
        digitalWrite(DefaultPin, HIGH);
        delay(100);
        digitalWrite(DefaultPin, LOW);
        delay(100);
      }
      sendOPC_x(OPC_IDLE);
    }
  }
  return;
}

void Turntable_Order()
// Control Turntable Direction by a SPDT ON-ON (Input: TT_dir_PIN)
// and Turntable Speed by some Push buttons (Input: TT_stop_PIN, TT_lowspeed_PIN, TT_midspeed_PIN)
{
  if ((digitalRead(TT_dir_PIN) == HIGH) && TT_dir)
  {
    TT_dir = false;
    TT_Throttle.Change_DIRF(-0x20);
  }
  if ((digitalRead(TT_dir_PIN) == LOW) && !TT_dir)
  {
    TT_dir = true;
    TT_Throttle.Change_DIRF(0x20);
  }
  if (digitalRead(TT_stop_PIN) == Activated)
  {
    delay(100);
    if (digitalRead(TT_stop_PIN) == Activated)
    {
      while (digitalRead(TT_stop_PIN) == Activated)
      {
        digitalWrite(DefaultPin, HIGH);
        delay(100);
        digitalWrite(DefaultPin, LOW);
        delay(100);
      }
      Serial.print("Turntable ");
      TT_Throttle.Change_SPD(0x00);
    }
  }
  if (digitalRead(TT_lowspeed_PIN) == Activated)
  {
    delay(100);
    if (digitalRead(TT_lowspeed_PIN) == Activated)
    {
      while (digitalRead(TT_lowspeed_PIN) == Activated)
      {
        digitalWrite(DefaultPin, HIGH);
        delay(100);
        digitalWrite(DefaultPin, LOW);
        delay(100);
      }
      Serial.print("Turntable ");
      TT_Throttle.Change_SPD(0x03);
    }
  }
  if (digitalRead(TT_midspeed_PIN) == Activated)
  {
    delay(100);
    if (digitalRead(TT_midspeed_PIN) == Activated)
    {
      while (digitalRead(TT_midspeed_PIN) == Activated)
      {
        digitalWrite(DefaultPin, HIGH);
        delay(100);
        digitalWrite(DefaultPin, LOW);
        delay(100);
      }
      Serial.print("Turntable ");
      TT_Throttle.Change_SPD(0x40);
    }
  }
  return;
}

void Loco_Order()
// Control LOCO Sound by some Push buttons (Input: Loco_start_stop_PIN, Loco_whistle_PIN)
{
  if ((digitalRead(Loco_start_stop_PIN) == LOW) && Loco_On == false)
  {
    delay(100);
    if ((digitalRead(Loco_start_stop_PIN) == LOW) && Loco_On == false)
    {
      while (digitalRead(Loco_start_stop_PIN) == LOW)
      {
        digitalWrite(DefaultPin, HIGH);
        delay(100);
        digitalWrite(DefaultPin, LOW);
        delay(100);
      }
      Loco_Throttle.Change_DIRF(0x10);
      delay(500);
      Loco_Throttle.Change_DIRF(0x08);
      delay(500);
      Loco_Throttle.Change_DIRF(-0x08);
      delay(3000);
      Loco_Throttle.Change_SND(0x01);
      delay(1500);
      Loco_Throttle.Change_SND(-0x01);
      delay(500);
      Loco_Throttle.Change_DIRF(0x01);
      delay(500);
      Loco_Throttle.Change_DIRF(-0x01);
      delay(500);
      Loco_Throttle.Change_DIRF(0x01);
      Loco_On = true;
    }
  }
  if ((digitalRead(Loco_start_stop_PIN) == LOW) && Loco_On == true)
  {
    delay(100);
    if ((digitalRead(Loco_start_stop_PIN) == LOW) && Loco_On == true)
    {
      while (digitalRead(Loco_start_stop_PIN) == LOW)
      {
        digitalWrite(DefaultPin, HIGH);
        delay(100);
        digitalWrite(DefaultPin, LOW);
        delay(100);
      }
      Loco_Throttle.Change_DIRF(-0x01);
      delay(1000);
      Loco_Throttle.Change_DIRF(-0x10);
      Loco_On = false;
    }
  }
  if ((digitalRead(Loco_whistle_PIN) == LOW) && Loco_On == true)
  {
    delay(100);
    if ((digitalRead(Loco_whistle_PIN) == LOW) && Loco_On == true)
    {
      while (digitalRead(Loco_whistle_PIN) == LOW)
      {
        digitalWrite(DefaultPin, HIGH);
        delay(100);
        digitalWrite(DefaultPin, LOW);
        delay(100);
      }
      Loco_Throttle.Change_DIRF(0x04);
      delay(250);
      Loco_Throttle.Change_DIRF(-0x04);
    }
  }
  return;
}

To be continued...

 

Fabrice

Link to post
Share on other sites

Hi Fabrice,

 

That's looking very interesting - and thank you for posting the code. Do you think you'd be able to create and share a short video to practically demonstrate your setup, and how it works? It might be easier to fully appreciate all the work you've done here!  :good:

 

Thanks,

Alan

Link to post
Share on other sites

  • 9 months later...

Thought you might like to know of a book, Arduino Model Railroad Animation, by Paul and David Bradt, available in book form or for Kindle. I've downloaded the Kindle version and will post some comments when I've had chance to read it.

Link to post
Share on other sites

  • 2 weeks later...

I thought you might like to see a short video of our clubs kids layout called Little Totston. It has recently been upgraded with a number of Arduinos to flash lights on emergency vehicles, simulate a fire and arc welding. Even the post mill rotates 45 degress on a servo every 30 seconds. The giraffe car sadly does not use an Arduino (it operates from magnets). My favorite animation is the crane which the kids can operate from an arcade game joystick on the front of the layout. There are also buttons provided so that the children can trigger the animations.

 

I am still adding things and am currently working on a timer that will operate each animation every 90 seconds if nobody pushes the button. Other new features will include a truck with a working tipper, a workshop car lift, a car transporter that will unload a car and an operating fork lift. All controlled of course by Arduino.

 

https://www.youtube.com/watch?v=FidcuHOQD0w

  • Like 1
Link to post
Share on other sites

Thought you might like to know of a book, Arduino Model Railroad Animation, by Paul and David Bradt, available in book form or for Kindle. I've downloaded the Kindle version and will post some comments when I've had chance to read it.

 

Quite an interesting book and I'd say (as a beginner) that it's a useful beginner's reference. In addition to explaining Arduino basics, it gives examples of use for a variety of applications such as operating a crane and a car scale. The code needed for each project is provided. As much attention, if not more, is given to the building of the models themselves as hooking them up to the Arduino, including advice on soldering and drilling and tapping holes.

 

it's certainly worth the price of the Kindle version (even though my old Kindle is black and white only) but I'm not sure I'd want to pay the £20 or so for the paper version.

Link to post
Share on other sites

  • 1 month later...

I'm a bit late to this party, but I've only just discovered what can be done with Arduinos, how cheap the bits are, and how straightforward a lot of it looks. All thanks to Robin2 and his work on cheap radio control, otherwise I'd never have looked into it. Hopefully I can save loads of money by not buying a Deltang system for my forthcoming O gauge layout, and spend it on Arduinoising all the other layouts I'm building!

 

I've spent the last week doing a lot of reading, and a starter kit arrived today, so I can try turning an LED on and off for real! I've got a variety of bits on the way from China, that look as though they will do what I want, as my reading has got well ahead of playing with an LED, so I think I'm pretty clear on what I need. Just got to clear some space, and start working on it all now.

  • Like 2
Link to post
Share on other sites

  • 4 months later...

not sure if this is the right place to post, but was wondering what people would think of this?

 

I am going to sell some arduino - dcc interface boards - kit form, built, with/without an arduino nano.....

 

i want to see what the interest would be...

 

20170823 145541

 

Link to post
Share on other sites

  • RMweb Premium

 

not sure if this is the right place to post, but was wondering what people would think of this?

 

I am going to sell some arduino - dcc interface boards - kit form, built, with/without an arduino nano.....

 

i want to see what the interest would be...

 

 

 

 

I'd be ok so long as there's no SMD !!

  • Like 1
Link to post
Share on other sites

hi,

 

so the board uses standard size components, and an 6n137 opti isolator. its an implementation of this 

 

https://rudysmodelrailway.files.wordpress.com/2014/07/schematic1.png

 

with the ability to connect it to what ever pin ( usually a digital interrupt ) to the arduino.....

 

you can then use it to connect other things to the arduino, so for me, im going to use them in my signal boxes, along with an arduino and an adafruit servo motor controller - my plan it ao connect a keyboard and a screen so i can either us dcc accessory addresses, or the keypad.

 

i didnt want to have headers for an arduino ( although i might to a version like that too ) as i didnt want it to restrict the usage - but i wanted to make it small enough that anyone could hook it in to other projects.

Link to post
Share on other sites

From looking (with amazement) at people paying £20 for a Cobalt turnout motor when they could do the same job with a £2.50 servo I suspect you could easily charge £7 for your £1.50 boards.

 

Just think of a number and treble it.

 

I am reminded of a story from my youth. A friend knew a guy who made fireplace surrounds and he was struggling to make a living. Then he quadrupled the price and he could not keep up with demand.

 

...R

  • Like 1
Link to post
Share on other sites

From looking (with amazement) at people paying £20 for a Cobalt turnout motor when they could do the same job with a £2.50 servo.......

 

 

Same is true of Frog Juicers, an astonishingly expensive solution to a non-problem if ever there was one!

 

Best

Simon

I've decided that I'm going to be extravagant on my DC layouts, and spend more than the price of a microswitch on relays to switch the frogs, as it's easier to shove a few wires into an Arduino, than to add mechanical bits to the servos, and fiddle about adjusting it. It will still cost far less than a Peco point motor though, let alone these exotic Cobalts and the like :).

Link to post
Share on other sites

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account in our community. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
 Share

×
×
  • Create New...